Appearance
调用说明
本站点大部分模型都可以直接通过OpenAI
的 API 进行调用, 您只需要更改模型名称即可。
OpenAI 调用
将 OpenAI 的 API 基础地址https://api.openai.com
改为 UniAPI 的接口地址:https://api.uniapi.io
,参照 OpenAI 官方文档搭配令牌页面生成的 Key 进行调用即可快速调用。
Python 示例
bash
pip install openai
python
from openai import OpenAI
client = OpenAI(
base_url="https://api.uniapi.io/v1",
api_key="sk-xxxxxx"
)
completion = client.chat.completions.create(
model="gpt-4o-mini",
max_tokens=16384,
messages=[
{"role": "user", "content": "hi"}
]
)
print(completion)
Curl 示例
聊天接口
bash
curl --request POST \
--url https://api.uniapi.io/v1/chat/completions \
--header 'Authorization: Bearer sk-替换为你的key' \
-H "Content-Type: application/json" \
--data '{
"max_tokens": 1200,
"model": "gpt-3.5-turbo",
"temperature": 0.8,
"top_p": 1,
"presence_penalty": 1,
"messages": [
{
"role": "system",
"content": "You are ChatGPT, a large language model trained by OpenAI. Answer as concisely as possible."
},
{
"role": "user",
"content": "hi~"
}
]
}'
DALL-E
bash
curl https://api.uniapi.io/v1/images/generations \
-H 'Authorization: Bearer sk-替换为你的key' \
-H "Content-Type: application/json" \
-d '{
"model": "dall-e-3",
"prompt": "a white siamese cat",
"n": 1,
"size": "1024x1024"
}'
vision
bash
curl https://api.uniapi.io/v1/chat/completions \
-H 'Authorization: Bearer sk-替换为你的key' \
-H "Content-Type: application/json" \
-d '{
"max_tokens": 1200,
"model": "gpt-4-vision-preview",
"messages": [
{
"role": "system",
"content": "You are an expert Tailwind developer"
},
{
"role": "user",
"content": [
{
"type": "text",
"text": "将图片生成网页代码"
},
{
"type": "image_url",
"image_url": {
"url": "图片链接或者图片base64"
}
}
]
}
]
}'
whisper
bash
curl --request POST \
--url https://api.uniapi.io/v1/audio/transcriptions \
--header 'Authorization: Bearer sk-你的key' \
--header 'Content-Type: multipart/form-data' \
--form file=@/path/to/file/openai.mp3 \
--form model=whisper-1
tts
bash
curl https://api.uniapi.io/v1/audio/speech \
-H "Authorization: Bearer sk-你的key" \
-H "Content-Type: application/json" \
-d '{
"model": "tts-1",
"input": "你说点什么 包括中文!",
"voice": "alloy"
}' \
--output speech.mp3
Claude
您使用OpenAI SDK
或者使用OpenAI API
格式,您只需要将model
改成Claude
的模型名称即可调用Claude
的模型。
如果需要使用claude
API, 请在 base_url 中添加/claude
后缀,例如:https://api.uniapi.io/claude
python 示例
bash
pip install anthropic
python
import anthropic
client = Anthropic(
api_key="sk-xxxxxxx",
base_url="https://api.uniapi.io/claude",
)
message = client.messages.create(
model="claude-3-5-sonnet-20240620",
max_tokens=1024,
messages=[
{"role": "user", "content": "Hello, Claude"}
]
)
print(message.content)
Curl 示例
更多示例,请查看Anthropic 官方文档
聊天接口
bash
curl --request POST \
--url https://api.uniapi.io/claude/v1/messages \
-H "Content-Type: application/json" \
-H "x-api-key: sk-替换为你的key" \
--data '{
"model": "claude-3-haiku-20240307",
"max_tokens": 1024,
"messages": [
{
"role": "user",
"content": "Hello, world"
}
]
}'
Gemini
使用OpenAI SDK
或者使用OpenAI API
格式,您只需要将model
改成Gemini
的模型名称即可调用Gemini
的模型。
Midjourney
支持 midjourney-proxy-plus 接口协议, 接口地址使用:
https://hk.uniapi.io
(境内网路)或https://api.uniapi.io
(境外网路)Relax 模式路径:
/mj-relax/mj
Fast 模式路径:/mj
或/mj-fast/mj
Turbo 模式路径:/mj-turbo/mj
详见接口说明。
python 示例
python
import requests
import time
import json
# 配置信息
# Relax模式请求路径:/mj-relax
# Fast模式请求路径:/mj-fast
# Turbo模式请求路径:/mj-turbo
# 如果不填写,默认是Fast模式
BASE_URL = "https://api.uniapi.io/mj-relax"
BEARER_TOKEN = "your_token_here"
HEADERS = {
"mj-api-secret:": f"{BEARER_TOKEN}",
"Content-Type": "application/json"
}
class MJImageGenerator:
def __init__(self):
self.base_url = BASE_URL
self.headers = HEADERS
def submit_task(self, prompt):
"""提交图片生成任务"""
url = f"{self.base_url}/mj/submit/imagine"
payload = {
"base64Array": [], # 这个是可选的,如果垫图,需要传入垫图的base64, 可以使用多张垫图 最多5张, 单张图片不超过1M
"prompt": prompt, # 这个是必填的,prompt 是必填的
"botType": "MID_JOURNEY" # 这个是必填的,botType 是必填的,MID_JOURNEY 表示 Midjourney 模型,NIJI_JOURNEY 表示 Niji 模型, 详细参考 https://docs.midjourney.com/docs/models
}
response = requests.post(url, headers=self.headers, json=payload)
data = response.json()
if data["code"] not in [1, 22]:
raise Exception(f"提交任务失败: {data['description']}")
return data["result"]
def action(self, customId, taskId):
"""执行操作"""
url = f"{self.base_url}/mj/submit/action"
payload = {
"customId": customId,
"taskId": taskId
}
response = requests.post(url, headers=self.headers, json=payload)
data = response.json()
if data["code"] not in [1, 22]:
raise Exception(f"提交任务失败: {data['description']}")
return data["result"]
def modal(self, taskId, prompt):
"""执行modal操作"""
url = f"{self.base_url}/mj/submit/modal"
payload = {
"prompt": prompt,
"taskId": taskId
}
response = requests.post(url, headers=self.headers, json=payload)
data = response.json()
if data["code"] not in [1, 22]:
raise Exception(f"提交任务失败: {data['description']}")
return data["result"]
def describe(self, base64, botType):
"""执行图生文操作"""
url = f"{self.base_url}/mj/submit/describe"
payload = {
"base64": base64,
"botType": botType
}
response = requests.post(url, headers=self.headers, json=payload)
data = response.json()
if data["code"] not in [1, 22]:
raise Exception(f"提交任务失败: {data['description']}")
return data["result"]
def shorten(self, prompt, botType):
"""执行缩短提示词的操作"""
url = f"{self.base_url}/mj/submit/shorten"
payload = {
"prompt": prompt,
"botType": botType
}
response = requests.post(url, headers=self.headers, json=payload)
data = response.json()
if data["code"] not in [1, 22]:
raise Exception(f"提交任务失败: {data['description']}")
return data["result"]
def fetch_task_status(self, task_id):
"""获取任务状态"""
url = f"{self.base_url}/mj/task/{task_id}/fetch"
response = requests.get(url, headers=self.headers)
return response.json()
def wait_for_completion(self, task_id):
"""轮询等待任务完成"""
while True:
data = self.fetch_task_status(task_id)
status = data["status"]
progress = data["progress"]
print(f"当前进度: {progress}")
if status == "SUCCESS":
print("任务完成!")
print(f"图片链接: {data['imageUrl']}")
print(f"提示词: {data['prompt']}")
print(f"提示词EN: {data['promptEn']}")
print("\n可用的操作按钮:")
print("\按钮说明, 顺序,从左往右,从上往下。 Ux:表示你想要操作哪张图片。 🔄 表示重新绘制。 Vx:表示你想要变化哪一张图片 ")
# 参考
# https://docs.midjourney.com/docs/midjourney-discord
# https://docs.midjourney.com/docs/variations
for button in data["buttons"]:
label = button['label'] if button['label'] != "" else button['emoji']
print(f"{label}: {button['customId']}")
return data
elif status == "FAILURE":
raise Exception(f"任务失败: {data['failReason']}")
time.sleep(10) # 每10秒轮询一次
def main():
try:
generator = MJImageGenerator()
# 示例prompt
# Cyberpunk 风格, 可以不填,可选值: 賽博朋克: Cyberpunk,星際: Warframe,動漫: ACGN,日本漫畫: Japanese comics/manga,水墨畫風格: Ink Wash Painting Style,原創: Original,風景畫: landscape,插畫: illustration,漫畫: Manga,現代自然: modern organic,創世紀: Genesis,海報風格: posterstyle,超現實主義: surrealism,素描: sketch,寫實: realism,水彩畫: Watercolor painting,立體主義: Cubism,黑白: black and white,膠片攝影風格: fm photography,電影化: cinematic,清晰的面部特徵: dlear facial features
# Wide view 宽视角, 可以不填, 可选值: 寬視角: Wide view,鳥瞰視角: Aerial view,頂視角: Top view,仰視角: Upview,正面視角: Front view,頭部特寫: Headshot,超廣角視角: Ultrawideshot,中景: Medium Shot(MS),遠景: Long Shot(LS),景深: depth offield(dof)
# Face Shot (VCU) 人物特写, 可以不填, 可选值: 臉部特寫: Face Shot (VCU),大特寫: Big Close-Up(BCU),特寫: Close-Up(CU),腰部以上: Waist Shot(WS),膝蓋以上: KneeShot(KS),全身照: Full Length Shot(FLS),極遠景: Extra Long Shot(ELS)
# Cold light 灯光, 可以不填,可选值: 冷光: Cold light,暖光: Warm light,硬光: hard lighting,戲劇性光線: Dramatic light,反射光: reflection light,薄霧: Misty foggy,自然光: Natural light,陽光: Sun light,情緒化: moody
# 可爱的猫, 描述你想要生成的图片
# --q 2 表示质量, 可选值: 0.25,0.5,1,2, 参考 https://docs.midjourney.com/docs/quality
# --s 50 表示艺术程度,可选值: 0-1000,参考 https://docs.midjourney.com/docs/stylize
# --v 6.1 表示版本, 可选值:1、2、3、4、5、5.0、5.1、5.2、6 和 6.1, 如果使用niji模型,则需要改为 --niji 版本号, 参考 https://docs.midjourney.com/docs/models
# --ar 4:3 表示宽高比
# 更多请参考 https://docs.midjourney.com/docs/parameter-list
prompt = "Cyberpunk,Wide view,Face Shot (VCU),Cold light,可爱的猫 --q 2 --s 50 --v 6.1 --ar 4:3"
print("提交任务中...")
task_id = generator.submit_task(prompt)
print(f"任务ID: {task_id}")
print("等待任务完成...")
generator.wait_for_completion(task_id)
# 按钮操作, 每次有按钮,都按照这个操作执行。
# action_id = generator.action("MJ::JOB::upsample::1::4f9c53b7-dc2a-441f-a7e0-e8b65dd2ce6d", task_id)
# print("等待任务完成...")
# generator.wait_for_completion(action_id)
# ------------------------------------------------------------
# 特殊操作, CustomZoom, 先 执行 按钮操作, 然后 执行 modal 操作
# 执行按钮操作
# action_id = generator.action("MJ::CustomZoom::ec92d09b-e6c4-458c-952f-d34e87b090a8", task_id)
# 执行 modal 操作
# 填写变焦值, 例如 1.8
# prompt += " --zoom 1.8"
# modal_id = generator.modal(prompt, action_id)
# print("等待任务完成...")
# generator.wait_for_completion(modal_id)
# 执行图生文操作
# task_id = generator.describe("", "MID_JOURNEY")
# print(f"任务ID: {task_id}")
# print("等待任务完成...")
# generator.wait_for_completion(task_id)
# 执行缩短提示词操作
# task_id = generator.shorten("Please create a whimsical majestic tower of donuts, intricately crafted and adorned with a mesmerizing array of colorful sprinkles. Bring this sugary masterpiece to life, ensuring every detail is rendered in stunning magical realism. Thank you!", "MID_JOURNEY")
# print(f"任务ID: {task_id}")
# print("等待任务完成...")
# generator.wait_for_completion(task_id)
except Exception as e:
print(f"发生错误: {str(e)}")
if __name__ == "__main__":
main()
Suno
Python 示例
python
import requests
import time
from typing import Dict, Any
key = "sk-xxxxx" # 替换为你的key
BASE_URL = "https://api.uniapi.io/suno"
def get_headers() -> Dict[str, str]:
return {
"Authorization": f"Bearer {key}",
"Content-Type": "application/json"
}
def handle_response(response: requests.Response) -> Dict[str, Any]:
response_data = response.json()
if response.status_code != 200:
raise Exception(f"请求失败,状态码: {response.status_code},响应信息: {response_data}")
if response_data.get("code") != "success":
raise Exception(f"操作失败,响应信息: {response_data}")
return response_data["data"]
def submit_lyrics(prompt: str) -> str:
url = f"{BASE_URL}/submit/lyrics"
data = {"prompt": prompt}
response = requests.post(url, headers=get_headers(), json=data)
return handle_response(response)
def fetch(task_id: str) -> Dict[str, Any]:
url = f"{BASE_URL}/fetch/{task_id}"
response = requests.get(url, headers=get_headers())
return handle_response(response)
def submit_song(payload: Dict[str, Any]) -> str:
url = f"{BASE_URL}/submit/music"
response = requests.post(url, headers=get_headers(), json=payload)
return handle_response(response)
def main():
prompt = "愉快的,摇滚的,学猫叫"
try:
lyrics_task_id = submit_lyrics(prompt)
lyrics_text = ""
while True:
lyrics_fetch = fetch(lyrics_task_id)
task_status = lyrics_fetch["status"]
if task_status == "FAILURE":
raise Exception("歌词生成失败")
if task_status == "SUCCESS":
lyrics_text = lyrics_fetch['data']['text']
break
print(f"歌词生成状态: {task_status},请等待2s...")
time.sleep(2)
print("歌词内容:" + lyrics_text)
if not lyrics_text:
raise Exception("歌词为空终止调用")
# 组装歌曲生成请求
payload = {
"prompt": lyrics_text,
"tags": "emotional punk",
"mv": "chirp-v3-5",
"title": "学猫叫"
}
# 提交歌曲生成请求
song_task_id = submit_song(payload)
print("歌曲任务ID:" + song_task_id)
isStream = False
# 轮询查询歌曲生成状态
while True:
task_data = fetch(song_task_id)
task_status = task_data["status"]
if task_status == "FAILURE":
raise Exception("歌曲生成失败")
if task_status == "SUCCESS":
break
if task_status == "IN_PROGRESS" and isStream == False:
isStream = True
print(f"歌曲已经可以通过流播放,但不可下载")
for song in task_data["data"]:
print(f"歌曲名称: {song['title']}")
print(f"歌曲封面: {song['image_url']}")
print(f"音频地址: {song['audio_url']}")
print("-" * 40)
print(f"歌曲生成状态: {task_status},请等待15s...")
time.sleep(15)
# 打印歌曲信息
for song in task_data["data"]:
print(f"歌曲名称: {song['title']}")
print(f"歌曲封面: {song['image_url']}")
print(f"音频地址: {song['audio_url']}")
print(f"视频地址: {song['video_url']}")
print("-" * 40)
except Exception as e:
print(f"发生错误: {e}")
if __name__ == "__main__":
main()
Udio
Python 示例
python
import requests
import time
from typing import Dict, Any
key = "sk-xxxxx" # 替换为你的key
BASE_URL = "https://api.uniapi.io/udio"
def get_headers() -> Dict[str, str]:
return {
"Authorization": f"Bearer {key}",
"Content-Type": "application/json"
}
def handle_response(response: requests.Response) -> Dict[str, Any]:
response_data = response.json()
if response.status_code != 200:
raise Exception(f"请求失败,状态码: {response.status_code},响应信息: {response_data}")
if response_data.get("code") != "success":
raise Exception(f"操作失败,响应信息: {response_data}")
return response_data["data"]
def fetch(task_id: str) -> Dict[str, Any]:
url = f"{BASE_URL}/fetch/{task_id}"
response = requests.get(url, headers=get_headers())
return handle_response(response)
def submit_song(payload: Dict[str, Any]) -> str:
url = f"{BASE_URL}/submit/music"
response = requests.post(url, headers=get_headers(), json=payload)
return handle_response(response)
def main():
try:
# 组装歌曲生成请求
# 自定义歌词示例:
payload = {
"gen_params": {
"lyrics": "[Verse]\n城中古庙尘封梦乡\n梵蒂冈街头雾漫黄昏光\n信徒静踏圣殿的星芒\n祈求灵感心中起波浪\n\n[Verse 2]\n香火缭绕心愿飞扬\n青石阶边影子偷偷藏\n钟声长鸣驱散迷茫\n老君庙中祷告声悠长\n\n[Chorus]\n去梵蒂冈上一柱老君庙请的香\n滚滚红尘中找寻方向\n去追梦像是风一样轻荡\n心灵在这里找到新希望\n\n[Verse 3]\n巷弄深处古老神像\n祈愿的心灵火焰炙热燃\n古文明与现代相辉映\n圣光普照人间暖心肠\n\n[Bridge]\n万里之外的梦想启航\n老君庙中眺望远方\n香火明灭如星光闪\n心愿在心中永存不忘\n\n[Chorus]\n去梵蒂冈上一柱老君庙请的香\n滚滚红尘中找寻方向\n去追梦像是风一样轻荡\n心灵在这里找到新希望",
# user 使用用户提供的歌词生成音乐,此时 prompt 的作用类似于 tags,填写风格
# instrumental 用于创建纯音乐,prompt 用于相关提示词
# generate 表示自动生成歌词,prompt 用于描述需要生成什么样的歌曲。
"lyrics_type": "user",
"prompt": "周杰伦",
"bypass_prompt_optimization": False,
"seed": -1,
# 用于指定在完整歌曲中生成片段的起始和结束位置。0% (0) 对应歌曲开头,50% (0.5) 对应歌曲中间,100% (1) 对应歌曲结尾。点击数值指示器可切换为自动模式,让模型自行决定最佳位置。这个功能在使用歌曲扩展特性时特别有用。
# 歌曲片段开始位置 范围 0-1, 默认 0
"song_section_start": 0.4,
# 控制提示词对生成内容的影响程度。较高的值可以提高对提示词的遵循度,但可能会导致生成的声音不够自然。
# 提示词强度 范围 0-1, 默认 0.5
"prompt_strength": 0.5,
# 控制模型在生成音频时对清晰度和乐器分离度的优先级。较高的值可能会产生更清晰的音频,但声音可能不够自然。
# 清晰度强度 范围 0-1,默认 0.25
"clarity_strength": 0.25,
# 控制歌词对生成内容的影响程度。较低的值可能会产生更自然的声音,但可能会忽略部分歌词内容。
# 歌词强度 范围 0-1,默认 0.5
"lyrics_strength": 0.5,
# 实验性功能。用于在生成质量和生成速度之间进行权衡。
# 生成质量 可选 0.25, 0.5, 0.75, 1。默认 0.75,数字越大,质量越高,速度越慢。
"generation_quality": 0.75,
"model_type": "udio130-v1.5", # udio32-v1.5 (30s的歌曲) / udio130-v1.5 (130s的歌曲)
"config": {
"mode": "regular" # 生成歌曲
}
}
}
# 自动生成歌词示例
payload2 = {
"gen_params": {
"prompt": "愉快的,摇滚的,学猫叫",
"lyrics": "",
"lyrics_type": "generate",
"bypass_prompt_optimization": False,
"seed": -1,
"song_section_start": 0.4,
"prompt_strength": 0.5,
"clarity_strength": 0.25,
"lyrics_strength": 0.5,
"generation_quality": 0.75,
"model_type": "udio130-v1.5",
"config": {
"mode": "regular"
}
}
}
# 提交歌曲生成请求
song_task_id = submit_song(payload)
print("歌曲任务ID:" + song_task_id)
isStream = False
# 轮询查询歌曲生成状态
while True:
task_data = fetch(song_task_id)
task_status = task_data["status"]
if task_status == "FAILURE":
raise Exception("歌曲生成失败")
if task_status == "SUCCESS":
break
print(f"歌曲生成状态: {task_status},请等待15s...")
time.sleep(15)
# 打印歌曲信息
for song in task_data["data"]['songs']:
print(f"歌曲名称: {song['title']}")
print(f"歌曲封面: {song['image_path']}")
print(f"音频地址: {song['song_path']}")
print("-" * 40)
except Exception as e:
print(f"发生错误: {e}")
if __name__ == "__main__":
main()